Demmler, Uwe (2023)
Steuerrecht aktuell 2023 (1), S. 145-148.
Sammeth, Michael; Ursache, Nicu-Cosmin; Alboaie, Sînică (2023)
Frontiers in Blockchain 2023/6, 1126978.
DOI: 10.3389/fbloc.2023.1126978
Introduction: Distributed ledger networks, chiefly those based on blockchain technologies, currently are heralding a next-generation of computer systems that aims to suit modern users’ demands. Over the recent years, several technologies for blockchains, off-chaining strategies, as well as decentralised and respectively self-sovereign identity systems have shot up so fast that standardisation of the protocols is lagging behind, severely hampering the interoperability of different approaches. Moreover, most of the currently available solutions for distributed ledgers focus on either home users or enterprise use case scenarios, failing to provide integrative solutions addressing the needs of both.
Methods: Herein, we introduce the OpenDSU platform that allows to interoperate generic blockchain technologies, organised–and possibly cascaded in a hierarchical fashion–in domains. To achieve this flexibility, we seamlessly integrated a set of well conceived components that orchestrate off-chain data and provide granularly resolved and cryptographically secure access levels, intrinsically nested with sovereign identities across the different domains. The source code and extensive documentation of all OpenDSU components described herein are publicly available under the MIT open-source licence at https://opendsu.com.
Results: Employing our platform to PharmaLedger, an inter-European network for the standardisation of data handling in the pharmaceutical industry and in healthcare, we demonstrate that OpenDSU can cope with generic demands of heterogeneous use cases in both, performance and handling substantially different business policies.
Discussion: Importantly, whereas available solutions commonly require a pre-defined and fixed set of components, no such vendor lock-in restrictions on the blockchain technology or identity system exist in OpenDSU, making systems built on it flexibly adaptable to new standards evolving in the future.
Meißner, Karin (2023)
IMPULSTAGUNG 2.0 -PSYCHISCHE GESUNDHEIT SICHTBAR MACHEN, Klinische Abteilung für Psychiatrie und Psychotherapeutische Medizin, Universitätsklinikum Graz, 14.06.2023.
Jacob, Carmen; Olliges, Elisabeth; Haile, A.; Hoffmann, Verena; Jacobi, Benjamin; Steinkopf, L.; Lanz, M.; Wittmann, M.; Tschöp, M. H.; Meißner, Karin (2023)
Jacob, Carmen; Olliges, Elisabeth; Haile, A.; Hoffmann, Verena; Jacobi, Benjamin...
Scientific Reports 13, 9908 (1).
DOI: 10.1038/s41598-023-36296-w
Uddehal, Shabhrish; Strutz, Tilo; Och, Hannah; Kaup, André (2023)
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'23), 4-10 June 2023, Rhodes Island, Greece 2023.
In recent years, it has been found that screen content images (SCI) can be effectively compressed based on appropriate probability modelling and suitable entropy coding methods such as arithmetic coding. The key objective is determining the best probability distribution for each pixel position. This strategy works particularly well for images with synthetic (textual) content. However, usually screen content images not only consist of synthetic but also pictorial (natural) regions. These images require diverse models of probability distributions to be optimally compressed. One way to achieve this goal is to separate synthetic and natural regions. This paper proposes a segmentation method that identifies natural regions enabling better adaptive treatment. It supplements a compression method known as Soft Context Formation (SCF) and operates as a pre-processing step. If at least one natural segment is found within the SCI, it is split into two subimages (natural and synthetic parts) and the process of modelling and coding is performed separately for both. For SCIs with natural regions, the proposed method achieves a bit-rate reduction of up to 11.6% and 1.52% with respect to HEVC and the previous version of the SCF.
Waibl, Paula; Rothenhäusler, Lena; Nöfer, Eberhard; Meißner, Karin (2023)
Prävention und Gesundheitsförderung 19, S. 250–258 .
DOI: 10.1007/s11553-023-01047-2
Jäger, Tamara; Kohls, Niko (2023)
In M. S. Staller, B. Zaiser, & S. Koerner (Eds.), Handbuch Polizeipsychologie: Wissenschaftliche Perspektiven und praktische Anwendungen., S. 189-208.
DOI: 10.1007/978-3-658-40118-4_10
Jäger, Tamara; Kohls, Niko (2023)
In: S. Staller, M., Zaiser, B., Koerner, S. (eds) Handbuch Polizeipsychologie. .
DOI: 10.1007/978-3-658-40118-4_17
Zagel, Christian (2023)
Schaub, Michael (2023)
Berliner Zeitung 125 (Freitag, 02. Juni 2023), S. 2.
Heinrich, Michael; Kohls, Niko (2023)
Bewusstseinswissenschaften. Transpersonale Psychologie und Psychotherapie, 2/2023. Ed.: Liane Hofmann. Petersberg: Vianova Verlag. 2023 / 2.
Hamberger, Jens; Hinterberger, T.; Loew, T.; Meißner, Karin; Beschoner, Petra; Roder, Eva; Weimer, K. (2023)
Hamberger, Jens; Hinterberger, T.; Loew, T.; Meißner, Karin; Beschoner, Petra...
ePoster, Deutscher Kongress für Psychosomatische Medizin und Psychotherapie (DKPM), 22-24.06.2022, Berlin.
Eggers, Christine; Olliges, Elisabeth; Böck, Stefan; Kruger, Stefan; Uhl, Waldemar; Meißner, Karin (2023)
Eggers, Christine; Olliges, Elisabeth; Böck, Stefan; Kruger, Stefan; Uhl, Waldemar...
Complementary Medicine Research.
DOI: 10.1159/000529865
Deloie, Dario; Kröger, Christine (2023)
Klinische Sozialarbeit. Zeitschrift für psychosoziale Praxis und Forschung 2023/19 (1), S. 9-12.
Schaub, Michael (2023)
TGA-Kongress, 23.-24.05.2023 in Berlin .
DOI: 10.13140/RG.2.2.17962.80328
Hardy, Anne; Kraft, Jana; Baustädter, Verena; Bögel-Witt, Martina; Krassnig, Katharina; Ziegler, Birgit; Meißner, Karin (2023)
Hardy, Anne; Kraft, Jana; Baustädter, Verena; Bögel-Witt, Martina; Krassnig, Katharina...
Posterpräsentation auf dem Wissenschaftstag des 54. TCM Kongresses Rothenburg o.d.T..
Touissant, L.; Sirios , F. ; Hirsch, J. K.; Weber, Annemarie; Schelling, J.; Kohls, Niko; Offenbächer, M. (2023)
Touissant, L.; Sirios , F. ; Hirsch, J. K.; Weber, Annemarie; Schelling, J....
Quality of Life Research, 26(9), 2449-2457. doi:10.1007/s11136-017-1604-7.
DOI: https://doi.org.10.1007/s11136-017-1604-7
Schneider, Lisa; Rischke, Roman; Krois, Joachim; Krasowski, Aleksander; Büttner, Martha; Mohammad-Rahimi, Hossein; Chaurasia, Akhilanand; Pereira, Nielsen S.; Lee, Jae-Hong; Uribe, Sergio E.; Shahab, Shahriar; Koca-Ünsal, Revan B.; Ünsal, Gürkan; Martinez-Beneyto, Yolanda; Brinz, Janet; Tryfonos, Olga; Schwendicke, Falk (2023)
Schneider, Lisa; Rischke, Roman; Krois, Joachim; Krasowski, Aleksander; Büttner, Martha...
Journal of Dental Research 2023/135, 104556.
DOI: 10.1016/j.jdent.2023.104556
Objective
Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs.
Methods
We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers.
Results
For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability.
Conclusion
If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high.
Clinical Significance
This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.
Demmler, Uwe; Stöckler, Manfred (2023)
Steuerrecht der betrieblichen Altersversorgung mit arbeitsrechtlichen Grundlagen Lfg. 51 / Mai 2023 / Band I / Teil 3, S. 1-194.
Kraft, Jana; Stamm, Lili; Waibl, Paula; Popovici, R. M.; Krieg, Jürgen; Meißner, Karin (2023)
Kraft, Jana; Stamm, Lili; Waibl, Paula; Popovici, R. M.; Krieg, Jürgen...
Oral presentation, 4th International Conference of the Society for Interdisciplinary Placebo Studies, Duisburg, Germany.
Friedrich-Streib-Str. 2
96450 Coburg