Nowaczyk, Slawomir; Biecek, Przemyslaw; Chung, Neo Christopher; Vallati, Mauro; Skruch, Pawel; Jaworek-Korjakowska, Joanna; Parkinson, Simon; Nikitas, Alexandros; Atzmüller, Martin; Tomás, Kliegr; Schmid, Ute; Bobek, Szymon; Lavrac, Nada; Peeters, Marieke; van Dierendonck, Roland; Robben, Saskia; Mercier-Laurent, Eunika; Kayakutlu, Gülgün; Owoc, Mieczyslaw Lech; Mason, Karl; Wahid, Abdul; Bruno, Pierangela; Calimeri, Francesco; Cauteruccio, Francesco; Terracina, Giorgio; Wolter, Diedrich; Leidner, Jochen L.; Kohlhase, Michael; Dimitrova, Vania (2023)
Nowaczyk, Slawomir; Biecek, Przemyslaw; Chung, Neo Christopher; Vallati, Mauro...
Communications in Computer and Information Science (CCIS) 1948.
DOI: 10.1007/978-3-031-56066-8_22
Lohrenscheit , Claudia (2023)
Hardy, Anne; Kraft, Jana; Baustädter, Verena; Bögel-Witt, Martina; Krassnig, Katharina; Ziegler, Birgit; Meißner, Karin (2023)
Hardy, Anne; Kraft, Jana; Baustädter, Verena; Bögel-Witt, Martina; Krassnig, Katharina...
Poster auf 20. Internationalem TAO Kongress 2023, Graz, Österreich.
Lohrenscheit , Claudia (2023)
Lehmann, Alexander; Landes, Dieter (2023)
Proc. 26th International Conference on Interactive Collaborative Learning / 52nd Int. Conf. on Engineering Pedagogy (ICL2023), S. 1499-1506.
Learning videos enjoy great popularity in a digitalized world, especially since their use is usually possible regardless of time and location. Learners use this advantage mainly in self-study. Supervision, as for example in classroom teaching, is rather difficult and learners are usually left to their own devices when learning obstacles arise. However, not treating learning obstacles can have serious consequences, ranging from a gradual loss of the learners’ motivation to the termination of the learning project. Consequently, learning obstacles must be identified and treated in order to support an efficient learning process. Fortunately, a digital learning environment opens up many opportunities to support learners automatically. This paper explains an approach to identify potential learning obstacles in video learning based on indirect feedback. The first part of the approach to removing learning obstacles in learning videos is based on an analysis of learners' click interaction within a video to identify potential problem areas. Building on this, the second part provides first thematically relevant ad hoc video recommendations for the potentially identified learning obstacle. In order to verify whether there is actually a learning obstacle, the third part explicitly induces learners to give indirect or direct feedback on whether the recommendations have helped them and, consequently, whether they have removed an actual learning obstacle.
Schönau, Maximilian; Hüttl, Bernd; Landes, Dieter (2023)
Proceedings of 40th European Photovoltaic Solar Energy Conference 2023.
On-site current-voltage (IV) measurements will play an essential role in the online monitoring of PV systems. However, challenging measurement conditions like inconsistent irradiance levels on PV arrays (e.g., due to local shading) can distort IV curves, leading to inaccurate characterizations. By accurately detecting deformed IV curves, the reliability of both on-site and remote IV measurements is significantly enhanced. For this purpose, several classifiers were evaluated using 4104 manually labeled IV measurements on a mc-Si-PV array. Machine learning tech-niques perform much better than a traditional rule-based filter, with accuracy above 99 %. A deep Autoencoder was employed to reduce IV measurements into a set of 7 features, which encoded the shape of the curves into a low dimen-sionality. The IV-Autoencoder improved the classification of IV curves, yielding better results than a feature reduction with Principal Component Analysis. The proposed classifiers are able to sort out on-site IV measurements under un-satisfactory environmental conditions, benefiting the online monitoring of PV systems. It may also be used as an indi-cator for faulty PV strings.
Gross, Hellen (2023)
Vortrag auf der Jahrestagung des Fachverbands für Kulturmanagementforschung e.V. in Berlin.
Esslinger, Adelheid Susanne; Schadt, Christian (2023)
Zeitschrift für Hochschulentwicklung Ausgabe 18 (4), S. 1-24.
Hochschulen sind engagierte Demonstratorinnen der Transformation (HRK, 2018). Im Sinne des Whole Institution Approach nachhaltigen Handelns an Hochschulen müssen sie in der Lehre innovative Lehr-Lern-Arrangements erarbeiten, um Zukunftsgestalter:innen auszubilden. Die Formate dienen neben der Sensibilisierung für transformatives Handeln auch der Wissensvermittlung und dem Fördern praktischen Handelns. In einem Lehr-Lern-Festival („Impact 23“) an der Hochschule Coburg erarbeiteten entsprechend Studierende praktische Lösungen für regionale Auftraggeber:innen, um den Herausforderungen der Transformation zu begegnen. Der folgende Beitrag schildert die Erfahrungen aus „Impact 23“ und leitet vielfältige Handlungsempfehlungen für die Hochschullehre ab.
Frenzel, Daniel; Blaschke, Oliver; Franzen, Christoph; Brand, Felix; Haas, Franziska; Troi, Alexandra; Drese, Klaus Stefan (2023)
Frenzel, Daniel; Blaschke, Oliver; Franzen, Christoph; Brand, Felix; Haas, Franziska...
Vortrag: Salt Weathering of Buildings and Stone Sculptures Asia 2023, S. 195-206.
Funke, Susanne A. (2023)
Demenzabend im Rahmen des TAO-Themenjahres 2023 - Gesundheit / Alte Kühlhalle Coburg .
Panico, Simone; Herrera-Avellanosa, Daniel; Troi, Alexandra (2023)
Journal of Building Engineering 75, 106999.
DOI: 10.1016/j.jobe.2023.106999
Kohls, Niko (2023)
Interview 2013 (3), S. 10-12.
Reiß, Fabienne; Schumann, A.; Sohl, L.; Thamm, M.; Scheiner, Ricarda; Noll, Matthias (2023)
Reiß, Fabienne; Schumann, A.; Sohl, L.; Thamm, M.; Scheiner, Ricarda...
Frontiers Microbiology
14, 1271498.
DOI: 10.3389/fmicb.2023.1271498
Meißner, Karin (2023)
Vortrag auf 6. SMS-Kongress "Chinesische Medizin im klinischen Alltag — Grundlagen, Anwendung & Wissenschaft", 8.-10-2023, Tutzing.
Hardy, Anne; Kraft, Jana; Baustädter, Verena; Bögel-Witt, Martina; Krassnig, Katharina; Ziegler, Birgit; Meißner, Karin (2023)
Hardy, Anne; Kraft, Jana; Baustädter, Verena; Bögel-Witt, Martina; Krassnig, Katharina...
Poster auf 6. SMS-Kongress "Chinesische Medizin im klinischen Alltag — Grundlagen, Anwendung & Wissenschaft", 8.-10. September 2023, Tutzing.
Flechsig, Gerd-Uwe; Galagedera, S. K. K. (2023)
Vortrag auf der Konferenz: 74th Annual Meeting of the International Society of Electrochemistry 2023.
Befolo, Olivier; Flechsig, Gerd-Uwe (2023)
Wissenschaftliches Poster: 74th Annual Meeting of the International Society of Electrochemistry in Lyon, France 2023.
Strutz, Tilo (2023)
31st European Signal Processing Conference (EUSIPCO), September 04--08, 2023, Helsinki, Finnland, S. 585-589.
The abbreviation rANS stands for a relatively new method of arithmetic coding based on asymmetric numeral systems (ANS) which combines the advantages of arithmetic coding in terms of performance and the advantages of Huffman coding in terms of speed.
Compared to conventional arithmetic coding methods, the mathematical apparatus is slightly different which has the consequence that the decoding order is reversed to the encoding order, i.e. the processing follows the last-in-first-out principle.
This makes it somewhat difficult to design the coding process to adapt to changing symbol statistics, and therefore rANS coding has so far only been applied in settings with fixed statistics.
In particular, the frequent rescaling of statistics required to reduce the influence of old symbols becomes a problem when the order of processing is different on the encoder and decoder sides.
This paper proposes a new method that allows adaptive coding within the framework of rANS coding and additionally offers the possibility of rescaling the symbols frequencies. Investigations show that this method enables the same compression performance for rANS as for conventional arithmetic coding.
Kohls, Niko (2023)
Interview 96 (3), S. 8-17.
Reißing, Ralf (2023)
5. Symposium zur Hochschullehre in den MINT-Fächern, September 2023, Nürnberg, S. 117-123.
Friedrich-Streib-Str. 2
96450 Coburg