Roßteutscher, Immanuel; Blaschke, Oliver; Dötzer, Florian; Uphues, Thorsten; Drese, Klaus Stefan (2024)
Roßteutscher, Immanuel; Blaschke, Oliver; Dötzer, Florian; Uphues, Thorsten...
Sensors 2024/24 (22), 7114.
DOI: 10.3390/s24227114
This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors’ ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area. The use of the Vision Transformer Masked Autoencoder Architecture (ViTMAE) and generative pre-training has shown that reliable damage detection is possible despite the considerable signal fluctuations caused by rope movement.
Schaub, Michael (2024)
Herbsttagung ITGA Niedersachsen, Sachsen-Anhalt und Bremen.
Kuth, Bastian; Oberberger, Max; Meyer, Quirin (2024)
Oldenburg, Jan; Wagner, Jonas; Troschke-Meurer, Sascha; Plietz, Jessica; Kaderali, Lars; Völzke, Henry; Nauck, Matthias; Homuth, Georg; Völker, Uwe; Simm, Stefan (2024)
Oldenburg, Jan; Wagner, Jonas; Troschke-Meurer, Sascha; Plietz, Jessica; Kaderali, Lars...
Biomolecules 14 (12), 1501.
DOI: 10.3390/biom14121501
The Explainable Modular Neural Network (XModNN) enables the identification of biomarkers, facilitating the classification of diseases and clinical parameters in transcriptomic datasets. The modules within XModNN represent specific pathways or genes of a functional hierarchy. The incorporation of biological insights into the architectural design reduced the number of parameters. This is further reinforced by the weighted multi-loss progressive training, which enables successful classification with a reduced number of replicates. The combination of this workflow with layer-wise relevance propagation ensures a robust post hoc explanation of the individual module contribution. Two use cases were employed to predict sex and neuroblastoma cell states, demonstrating that XModNN, in contrast to standard statistical approaches, results in a reduced number of candidate biomarkers. Moreover, the architecture enables the training on a limited number of examples, attaining the same performance and robustness as support vector machine and random forests. The integrated pathway relevance analysis improves a standard gene set overrepresentation analysis, which relies solely on gene assignment. Two crucial genes and three pathways were identified for sex classification, while 26 genes and six pathways are highly important to discriminate adrenergic-mesenchymal cell states in neuroblastoma cancer.
Blaschke, Oliver; Kluitmann, Jonas; Elsner, Jakob; Xie, Xie; Drese, Klaus Stefan (2024)
micromachines 15 (11), 1312.
DOI: 10.3390/mi15111312
The study presents a unifying methodology for characterizing micromixers, integrating both experimental and simulation techniques. Focusing on Dean mixer designs, it employs an optical evaluation for experiments and a modified Sobolev norm for simulations, yielding a unified dimensionless characteristic parameter for the whole mixer at a given Reynolds number. The results demonstrate consistent mixing performance trends across both methods for various operation points. This paper also proposes enhancements in the evaluation process to improve accuracy and reduce noise impact. This approach provides a valuable framework for optimizing micromixer designs, essential in advancing microfluidic technologies.
Zagel, Christian (2024)
IHK - Perspektiven für die Automobilzulieferindustrie in der Metropolregion Nürnberg.
Meißner, Karin (2024)
Vortrag am Landratsamt Kronach.
Hahn, Gernot; Kröger, Christine; Große, Lisa (2024)
socialnet Lexikon.
DOI: https://www.socialnet.de/lexikon/3534
Sammeth, Michael; Mudra, Susann; Bialdiga, Sina; Hartmannsberger, Beate; Kramer, Sofia; Rittner, Heike (2024)
Sammeth, Michael; Mudra, Susann; Bialdiga, Sina; Hartmannsberger, Beate; Kramer, Sofia...
Comparative Genomics 2024 (2802), 515-546.
DOI: 10.1007/978-1-0716-3838-5
Dehghani, Ali; Salaar, Hamza; Srinivasan, Priya; Zhou, Lixian; Arbeiter, Georg; Lindner, Alisa; Patiño Studencki, Lucila (2024)
Dehghani, Ali; Salaar, Hamza; Srinivasan, Priya; Zhou, Lixian; Arbeiter, Georg...
SAE International Journal of Connected and Automated Vehicles 2025 (3), 8.
DOI: 10.4271/12-08-03-0023
Lohrenscheit , Claudia (2024)
In: Rost, Sebastian/ Bloch, Bianca/ Kaiser, Anna-Katharina/ Kaul, Ina (Hg.): Bildung für nachhaltige Entwicklung in der Kindheitspädagogik. Beiträge zur Disziplin, Profession und Praxis der Pädagogik der frühen Kindheit. Weinheim/Basel. Beltz Juventa. S. 49-63 2024, 49-63.
Lohrenscheit , Claudia (2024)
2024.
Lohrenscheit , Claudia (2024)
2024.
Schaub, Michael; Floß, Alexander (2024)
HLH 75 (10), 16-18.
DOI: 10.37544/1436-5103-2024-10-16
Wolf, Maximilian; Tritscher, J.; Landes, Dieter; Hotho, Andreas; Schlör, D. (2024)
Computers and Security 2024 (145), 103993.
DOI: 10.1016/j.cose.2024.103993
Jovanovic, Aleksandar; Sammeth, Michael (2024)
Meißner, Karin (2024)
TV Oberfranken.
Meißner, Karin (2024)
Chinesische Medizin / Chinese Medicine 39 (2).
DOI: 10.1007/s00052-024-00130-x
Hößelbarth, Susann (2024)
R. Feustel, H. Schmidt-Semisch & U. Bröckling (Hrsg.). Handbuch Drogen in sozial- und kulturwissenschaftlicher Perspektive. Wiesbaden: Springer VS, 749-767.
DOI: 10.1007/978-3-658-43431-1
Vollmer, Tanja C.; Deubzer, Hannelore; Koppen, Gemma; Kéré, Francis; Niemeyer, Charlotte; Vraetz, Thomas; Iovita, Claudia; Kohler, Katharina; Bauer, Marie; Eggers, Isabel (2024)
Vollmer, Tanja C.; Deubzer, Hannelore; Koppen, Gemma; Kéré, Francis...
Online Publikation 2024/76.