Responsive image





Modalität und Shared Micro-Mobility: Die Nutzung von Verkehrsmitteln unter multioptionalen Bedingungen

Wilde, Mathias; Riedelbauch, Lukas (2024)

Internationales Verkehrswesen 76 (3), S. 48-50.



Die neue Wärmepumpen-Generation: Propan oder R32?

Schaub, Michael (2024)

7. Internationale Fachtagung Bauphysik & Gebäudetechnik (BGT 2024), Friedrichshafen, S. 365-375.


mehr

Improved screen content coding in VVC using soft context formation

Och, Hannah; Uddehal, Shabhrish; Strutz, Tilo; Kaup, André (2024)

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'24), 14-19 April 2024, Seoul, South Korea, accepted for publication 2024, S. 3685 - 3689.
DOI: 10.1109/ICASSP48485.2024.10447125


Peer Reviewed
 

Screen content images typically contain a mix of natural and synthetic image parts. Synthetic sections usually are comprised of uniformly colored areas and repeating colors and patterns. In the VVC standard, these properties are exploited using Intra Block Copy and Palette Mode. In this paper, we show that pixel-wise lossless coding can outperform lossy VVC coding in such areas. We propose an enhanced VVC coding approach for screen content images using the principle of soft context formation. First, the image is separated into two layers in a block-wise manner using a learning-based method with four block features. Synthetic image parts are coded losslessly using soft context formation, the rest with VVC. We modify the available soft context formation coder to incorporate information gained by the decoded VVC layer for improved coding efficiency. Using this approach, we achieve Bjontegaard-Delta-rate gains of 4.98% on the evaluated data sets compared to VVC.

mehr

Enhanced color palette modeling for lossless screen content

Och, Hannah; Uddehal, Shabhrish; Strutz, Tilo; Kaup, André (2024)

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'24), 14-19 April 2024, Seoul, South Korea, accepted for publication 2024, S. 3670 - 3674.
DOI: 10.1109/ICASSP48485.2024.10446445


Peer Reviewed
 

Soft context formation is a lossless image coding method for screen content. It encodes images pixel by pixel via arithmetic coding by collecting statistics for probability distribution estimation. Its main pipeline includes three stages, namely a context model based stage, a color palette stage and a residual coding stage. Each stage is only employed if the previous stage is impossible since necessary statistics, e.g. colors or contexts, have not been learned yet. We propose the following enhancements: First, information from previous stages is used to remove redundant palette entries and prediction errors in subsequent stages. Additionally, implicitly known stage decision signals are no longer explicitly transmitted. These enhancements lead to an average bit rate decrease of 1.16% on the evaluated data. Compared to FLIF and HEVC, the proposed method needs roughly 0.28 and 0.17 bits per pixel less on average for 24-bit screen content images, respectively.

mehr

Wärmepumpen in Mehrfamilienhäusern – Mythen & Einsatzmöglichkeiten bzw. -grenzen

Schaub, Michael (2024)

Online-Infoveranstaltung der ENERGIEregion Nürnberg e.V..


mehr

Wärmepumpen im Wohngebäude-Bestand– Kältemittel, Einsatzgrenzen, Hybridsysteme

Schaub, Michael (2024)

Online-Tagung des BTGA „BEG und Großwärmepumpen - Übersicht und aktuelle Informationen“.
DOI: 10.13140/RG.2.2.29962.27847


Open Access
mehr

Energieeffizienz industrieller Liegenschaften

Schaub, Michael (2024)

Innovation durch Dialog - "Energie intelligent im Unternehmen managen".


mehr

Verbesserte Clear-Sky-Erkennung durch hybrides Maschinelles Lernen

Schönau, Maximilian; Daume, Darwin; Panhuysen, Markus; Schulze, Achim...

7. Regenerative Energietechnik Konferenz in Nordhausen (RET.Con) 7. RET.Con, 2024 (7), S. 145-152.


 

Die präzise Erkennung von Clear-Sky-Momenten ist für die Überwachung und Effizienzana-lyse von Photovoltaikanlagen von zentraler Bedeutung, da zu diesen Zeitpunkten definierte und model-lierbare Einstrahlungsverhältnisse herrschen. Es wird ein hybrides Modell zur verbesserten Erkennung von Clear-Sky-Momenten auf Basis von Einstrahlungsdaten vorgestellt. Hierfür wurden zunächst ma-nuell, dann mithilfe eines CNNs Merkmale aus den Einstrahlungsdaten gebildet. Eine Falls tudie mit Referenzdaten belegt, dass durch die Kombination dieser wissens-und datengetriebenen Methoden Clear-Sky-Momente zuverlässiger identifiziert werden können. Dadurch können Analysemethoden schneller und zuverlässiger Aussagen über die untersuchten PV-Anlagen treffen.

mehr

Gamechanger für die Wärmewende: R290 und R32 in Wärmepumpen – Anwendung im Wohngebäudebestand

Schaub, Michael (2024)

cci Zeitung 2024 (01), S. 12-13.


mehr

Wärmepumpen im Wohngebäude-Bestand – Technologie, Anwendung, Förderung

Schaub, Michael (2023)

Vortragsreihe des Klima- und Umweltbeirats der Gemeinde Dörfles-Esbach.


mehr

GEG-konforme Beheizung von Wohngebäuden – eine technologische Einordnung

Schaub, Michael (2023)

Themenabend VDI-Bezirksgruppe Coburg.
DOI: 10.13140/RG.2.2.22273.63849


Open Access
mehr

Wärmewende: Von Mehrfamilienhäusern, Wärmepumpen und Extremwetter‐Ereignissen

Schaub, Michael (2023)

Transforming Economies.


Open Access
mehr

R290 und R32 in Wärmepumpen – Anwendung im Wohngebäudebestand

Schaub, Michael (2023)

Vortragsreihe der Gesundheitstechnischen Gesellschaft (GG) Berlin.
DOI: 10.13140/RG.2.2.30241.17765


Open Access
mehr

Improving IV Curve Classification by Machine Learning Methods Using Deep Autoencoders

Schönau, Maximilian; Hüttl, Bernd; Landes, Dieter (2023)

Proceedings of 40th European Photovoltaic Solar Energy Conference 2023.


 

On-site current-voltage (IV) measurements will play an essential role in the online monitoring of PV systems. However, challenging measurement conditions like inconsistent irradiance levels on PV arrays (e.g., due to local shading) can distort IV curves, leading to inaccurate characterizations. By accurately detecting deformed IV curves, the reliability of both on-site and remote IV measurements is significantly enhanced. For this purpose, several classifiers were evaluated using 4104 manually labeled IV measurements on a mc-Si-PV array. Machine learning tech-niques perform much better than a traditional rule-based filter, with accuracy above 99 %. A deep Autoencoder was employed to reduce IV measurements into a set of 7 features, which encoded the shape of the curves into a low dimen-sionality. The IV-Autoencoder improved the classification of IV curves, yielding better results than a feature reduction with Principal Component Analysis. The proposed classifiers are able to sort out on-site IV measurements under un-satisfactory environmental conditions, benefiting the online monitoring of PV systems. It may also be used as an indi-cator for faulty PV strings.

mehr

Wärmepumpe auch im Bestand effizient

Schaub, Michael (2023)

Aufgeladen - Der Energie-Podcast von lekker Folge 22.


Open Access
mehr

Image Segmentation for Improved Lossless Screen Content Compression

Uddehal, Shabhrish; Strutz, Tilo; Och, Hannah; Kaup, André (2023)

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'23), 4-10 June 2023, Rhodes Island, Greece 2023.


Peer Reviewed
 

In recent years, it has been found that screen content images (SCI) can be effectively compressed based on appropriate probability modelling and suitable entropy coding methods such as arithmetic coding. The key objective is determining the best probability distribution for each pixel position. This strategy works particularly well for images with synthetic (textual) content. However, usually screen content images not only consist of synthetic but also pictorial (natural) regions. These images require diverse models of probability distributions to be optimally compressed. One way to achieve this goal is to separate synthetic and natural regions. This paper proposes a segmentation method that identifies natural regions enabling better adaptive treatment. It supplements a compression method known as Soft Context Formation (SCF) and operates as a pre-processing step. If at least one natural segment is found within the SCI, it is split into two subimages (natural and synthetic parts) and the process of modelling and coding is performed separately for both. For SCIs with natural regions, the proposed method achieves a bit-rate reduction of up to 11.6% and 1.52% with respect to HEVC and the previous version of the SCF.

mehr

Riskanter Heizungstausch

Schaub, Michael (2023)

Berliner Zeitung 125 (Freitag, 02. Juni 2023), S. 2.


Open Access
mehr

Propan-Wärmepumpen als Gamechanger für die Wärmewende im Bestand

Schaub, Michael (2023)

TGA-Kongress, 23.-24.05.2023 in Berlin .
DOI: 10.13140/RG.2.2.17962.80328


Open Access
mehr

Re-Designing the Wheel for Systematic Travelling Salesmen

Strutz, Tilo (2023)

Algorithms 2023, 91 (2).
DOI: 10.3390/a16020091


Open Access Peer Reviewed
 

This paper investigates the systematic and complete usage of k-opt permutations with
k = 2 . . . 6 in application to local optimization of symmetric two-dimensional instances up to
107 points. The proposed method utilizes several techniques for accelerating the processing, such that
good tours can be achieved in limited time: candidates selection based on Delaunay triangulation,
precomputation of a sparse distance matrix, two-level data structure, and parallel processing based
on multithreading. The proposed approach finds good tours (excess of 0.72–8.68% over best-known
tour) in a single run within 30 min for instances with more than 105 points and specifically 3.37% for
the largest examined tour containing 107 points. The new method proves to be competitive with a
state-of-the-art approach based on the Lin–Kernigham–Helsgaun method (LKH) when applied to
clustered instances.

mehr

Numerical and Theoretical Investigation of the Gap Flow in Centrifugal Fans for Design and Off-Design Conditions

Fritsche, Manuel; Epple, Philipp; Delgado , Antonio (2022)

Journal of Fluids Engineering March 2023, 145(3), 031203 (March 2023), S. 1-14.
DOI: 10.1115/1.4056311


Peer Reviewed
mehr

Forschungs-Transfer-Center (FTC)

Hochschule Coburg

Friedrich-Streib-Str. 2
96450 Coburg


Ansprechperson für Publikationsverzeichnis:

Monika Schnabel
Referentin für Forschungs- und Drittmittelservice
T +49 9561 317 8062
monika.schnabel[at]hs-coburg.de