| Titel | Autoshuttle: A Novel Dataset for Advancing Autonomous Driving in Shuttle-Specific Environments |
|---|---|
| Medien | 2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI) |
| Verlag | IEEE |
| Band | 2024 |
| ISBN | Print ISBN: 979-8-3503-1721-3 |
| Verfasser | Lixian Zhou, Hamza Salaar, Michael Schmidt, Ali Dehghani, Prof. Dr. Georg Arbeiter |
| Seiten | 383-390 |
| Veröffentlichungsdatum | 2024-02-14 |
| Projekttitel | SMO-II |
| Zitation | Zhou, Lixian; Salaar, Hamza; Schmidt, Michael; Dehghani, Ali; Arbeiter, Georg (2024): Autoshuttle: A Novel Dataset for Advancing Autonomous Driving in Shuttle-Specific Environments. 2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI) 2024, 383-390. DOI: 10.1109/SAMI60510.2024.10432901 |