Backer, Alexander; Drese, Klaus Stefan (2025)
tm - Technisches Messen.
DOI: 10.1515/teme-2024-0111
Zusammenfassung
Geführte Akustische Wellen (GAW) haben sich im Themengebiet des Structural Health Monitoring (SHM) etabliert. Neben ihren Vorteilen bei der Überwachung von Objekten und Detektion von Fehlstellen, gibt es jedoch auch einige Herausforderungen. Zu diesen zählt die dispersive Natur der häufig eingesetzten Lambwellen. Dispersion führt zu Signalverzerrung und reduziert dadurch die räumliche Auflösung und erschwert die Erkennung von schwach reflektierenden Fehlstellen. In diesem Beitrag wird der Einsatz eines Phased-Array-Systems zur Delaminationserkennung bei einem Mehrschichtsystem demonstriert, bei dem dispersive Lambwellen zum Einsatz kommen. Durch das Kompensieren der Dispersionseffekte kann die Sign Coherence Factor (SCF) Erweiterung des Total Focusing Method (TFM) Algorithmus eingesetzt und so auch schwach reflektierende Fehlstellen erkannt werden. Des Weiteren wird auf das Entstehen von Modenüberlagerungen bei Mehrschichtsystemen eingegangen, die bei der Auswahl der Arbeitsfrequenz und Sendesignallänge des Phased-Array-Systems berücksichtigt werden müssen.
AbstractGuided Acoustic Waves (GAW) are well established in the field of Structural Health Monitoring (SHM). However, in addition to their advantages in monitoring objects and detecting defects, there are also several challenges. These include the dispersive nature of the commonly used Lamb waves. Dispersion leads to signal distortion that reduces spatial resolution and makes it difficult to detect weakly reflecting defects. This paper demonstrates the use of a phased array system for delamination detection in a multilayer system using dispersive Lamb waves. By compensating for the dispersion effects, the Sign Coherence Factor (SCF) extension of the Total Focusing Method (TFM) algorithm can be used to detect even weakly reflective defects. Furthermore, the occurrence of mode superposition in multilayer systems is discussed, which must be taken into account when selecting the operating frequency and transmit signal length of the phased array system.
Roßteutscher, Immanuel; Blaschke, Oliver; Dötzer, Florian; Uphues, Thorsten; Drese, Klaus Stefan (2024)
Roßteutscher, Immanuel; Blaschke, Oliver; Dötzer, Florian; Uphues, Thorsten...
Sensors 2024/24 (22), 7114.
DOI: 10.3390/s24227114
This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors’ ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area. The use of the Vision Transformer Masked Autoencoder Architecture (ViTMAE) and generative pre-training has shown that reliable damage detection is possible despite the considerable signal fluctuations caused by rope movement.
Blaschke, Oliver; Kluitmann, Jonas; Elsner, Jakob; Xie, Xie; Drese, Klaus Stefan (2024)
micromachines 15 (11), 1312.
DOI: 10.3390/mi15111312
The study presents a unifying methodology for characterizing micromixers, integrating both experimental and simulation techniques. Focusing on Dean mixer designs, it employs an optical evaluation for experiments and a modified Sobolev norm for simulations, yielding a unified dimensionless characteristic parameter for the whole mixer at a given Reynolds number. The results demonstrate consistent mixing performance trends across both methods for various operation points. This paper also proposes enhancements in the evaluation process to improve accuracy and reduce noise impact. This approach provides a valuable framework for optimizing micromixer designs, essential in advancing microfluidic technologies.
Kluitmann, Jonas; Drese, Klaus Stefan (2024)
Posterpräsentation auf der EuroMBR Microfluidics Catanzaro, September 2024 .
Backer, Alexander; Krempel, Sandro; Stromer, Benedikt; Drese, Klaus Stefan (2024)
ACTUATOR 2024, GMM-Fachbericht 110 2024, 215-218.
The precise positioning of objects (especially on a flat surface), is crucial in numerous industrial applications, from large
object movement in machine tools to precise alignment in optical microscopes. This paper focuses on targeted movement
and positioning of smaller objects on a flat surface using piezoelectric actuators. Specifically, it investigates the stick-slip
motor principle for achieving high-speed transport and high-resolution positioning. The stick-slip motor utilizes the friction
between objects and surfaces to generate motion. The experimental setup includes a piezoelectric actuator inducing
asymmetric vibrations in a glass plate (stator), resulting in controlled movement of a slider (the object). An asymmetrical
excitation signal, generated by superimposing two sinusoidal waves, is applied to the piezoelectric actuator. The influence
of the different parameters of the excitation signal on the object speed is examined in more detail. The results demonstrate
successful movement and precise positioning of various objects. It concludes that the developed stick-slip motor can
efficiently move objects of different materials and sizes, offering a versatile solution for precise object positioning in
confined spaces.
Backer, Alexander; Tietze, Sabrina; Drese, Klaus Stefan (2024)
Tagungsband 22. GMA/ITG-Fachtagung Sensoren und Messsysteme 2024 2024, 306-312.
DOI: 10.5162/sensoren2024/D1.3
Für die nicht-invasive Durchflussmessung werden meist Ultraschallsensoren verwendet, die reversibel an das zu untersuchende Rohrsystem angebaut werden. Die Messgenauigkeit dieser Sensoren wird durch mögliche Ablagerungen im Rohrinneren beeinflusst.
In dem hier vorgestellten Forschungsvorhaben, soll es mit Hilfe eines ultraschallbasierten Messverfahren möglich sein, sowohl die Materialeigenschaften und Wandstärke des Rohres direkt zu ermitteln als auch eventuell vorhandene Schichten im Rohrinneren zu detektieren und zu charakterisieren. Mit Hilfe dieser zusätzlichen Messgrößen soll zukünftig eine präzisere Durchflussmessung von klemmbaren Ultraschalldurchflusssensoren ermöglicht werden. Um die Algorithmen zur Charakterisierung der Materialeigenschaften zu erproben, wurden zunächst Simulationen zur Wellenausbreitung der geführten akustischen Wellen und deren Interaktion mit Schichten durchgeführt. Es erfolgte die Auswertung der beiden Grundmoden, A0 und S0, in einem definierten Frequenzbereich. Im Anschluss erfolgte die experimentelle Überprüfung auf einer ebenen Platte mit definierten Schichten von 415 μm und 780 μm. Die bisherigen Messergebnisse zeigen, dass es möglich ist mit dem entwickelten Algorithmus das Material und die Schichten zu charakterisieren. Die noch vorhandene Abweichung der Materialdaten von den Literaturwerten ergibt sich u. a. aus dem Schwingungsverhalten der Piezokeramik. Zukünftig soll die Auswertung durch direkte Messung der Schwingungseigenschaften der Piezokeramik weiter optimiert werden.
Kluitmann, Jonas; Blaschke, Oliver; Elsner, Jakob; Drese, Klaus Stefan (2024)
Posterpräsentation auf der iCampus Cottbus Conference ICCC2024, Mai 2024.
Kluitmann, Jonas; Blaschke, Oliver; Elsner, Jakob; Drese, Klaus Stefan (2024)
, 195-198.
DOI: 10.5162/iCCC2024/P25
Kluitmann, Jonas; Drese, Klaus Stefan (2024)
Vortrag auf dem 12th Workshop of Chemical and Biological Micro Laboratory Technology CBM2024 in Ilmenau, März 2024.
Environmental pollution is an ever-growing concern. Industrial sites as well as agricultural use areas can bear immense harmful burdens. Unintentionally improperly disposed of wastes as well as illegally dumped chemicals pose additional risks in the environment, while remains of pharmaceuticals are a regular concern in sources of drinking water. Pollutants such as PFAS and microplastics could even be detected in the most remote regions of the earth and are known for adverse effects on humans and their environment. Establishing a comprehensive overview of where pollution of which severity and with what substances occurs is thus important, so remediations can be planned and prioritized. This necessitates fast, versatile, reliable and cheap measurements, ideally directly at sampling sites.
A promising class of transducers for detecting a multitude of pollutants are DNA Quantum Clusters. QC:DNA are highly sensitive and selective transducers for many substances, showing responses in their fluorescent behaviors based on their chemical environment. Based on the specific design, QC:DNA can interact with different chemical species and exhibit tuned excitation and emission wavelengths.
For the use of such transducers, we present a fluorescence reader integrated around capillaries. The system is designed for easy and fast customization for a large range of excitation and emission wavelengths while focusing on system portability and striving for affordability. The microfluidic system controlling and performing the assay is based on droplet sequences to facilitate fast mixing while allowing for incubation times with minimal dispersion and enabling a temporary storage and a precise processing of samples.
Brand, Felix; Drese, Klaus Stefan (2024)
Sensors 24 (5), 1630.
DOI: 10.3390/s24051630
Optoacoustics is a metrology widely used for material characterisation. In this study, a measurement setup for the selective determination of the frequency-resolved phase velocities and attenuations of longitudinal waves over a wide frequency range (3-55 MHz) is presented. The ultrasonic waves in this setup were excited by a pulsed laser within an absorption layer in the thermoelastic regime and directed through a layer of water onto a sample. The acoustic waves were detected using a self-built adaptive interferometer with a photorefractive crystal. The instrument transmits compression waves only, is low-contact, non-destructive, and has a sample-independent excitation. The limitations of the approach were studied both by simulation and experiments to determine how the frequency range and precision can be improved. It was shown that measurements are possible for all investigated materials (silicon, silicone, aluminium, and water) and that the relative error for the phase velocity is less than 0.2%.
Lutter, Klaus; Backer, Alexander; Drese, Klaus Stefan (2023)
Sensors 2023 (23), 9892.
DOI: 10.3390/s23249892
Panzardi, Enza; Drese, Klaus Stefan; Mugnaini, Marco; Parri, Lorenzo ; Vignoli, Valerio; Fort, Ada (2023)
Panzardi, Enza; Drese, Klaus Stefan; Mugnaini, Marco; Parri, Lorenzo ; Vignoli, Valerio...
IEEE Transactions on Instrumentation and Measurement 2023.
DOI: 10.1109/TIM.2023.3328691
Dötzer, Florian; Hommel, Markus; Drese, Klaus Stefan; Sinzinger, Stefan (2023)
EPJ Web of Conferences 2023 (287), 09017.
DOI: 10.1051/epjconf/202328709017
Frenzel, Daniel; Blaschke, Oliver; Franzen, Christoph; Brand, Felix; Haas, Franziska; Troi, Alexandra; Drese, Klaus Stefan (2023)
Frenzel, Daniel; Blaschke, Oliver; Franzen, Christoph; Brand, Felix; Haas, Franziska...
Vortrag: Salt Weathering of Buildings and Stone Sculptures Asia 2023, 195-206.
Frenzel, Daniel; Blaschke, Oliver; Franzen, Christoph; Brand, Felix; Haas, Franziska; Troi, Alexandra; Drese, Klaus Stefan (2023)
Frenzel, Daniel; Blaschke, Oliver; Franzen, Christoph; Brand, Felix; Haas, Franziska...
Heritage 6 (7), 5030-5050.
DOI: 10.3390/heritage6070266
Humidity, salt content, and migration in building materials lead to weathering and are a common challenge. To understand damage phenomena and select the right conservation treatments, knowledge on both the amount and distribution of moisture and salt load in the masonry is crucial. It was shown that commercial portable devices addressing moisture are often limited by the mutual interference of these values. This can be improved by exploiting broadband radar reflectometry for the quantification of humidity in historic masonry. Due to the above-mentioned limitations, today’s gold standard for evaluating the moisture content in historic buildings is still conducted by taking drilling samples with a subsequent evaluation in a specially designed laboratory, the so-called Darr method. In this paper, a new broadband frequency approach in the range between 0.4 and 6 GHz with improved artificial-intelligence data analysis makes sure to optimize the reflected signal, simplify the evaluation of the generated data, and minimise the effects of variables such as salt contamination that influence the permittivity. In this way, the amount of water could be determined independently from the salt content in the material and an estimate of the salt load. With new machine learning algorithms, the analysis of the permittivity is improved and can be made accessible for everyday use on building sites with minimal intervention by the user. These algorithms were trained with generated data from different drying studies on single building bricks from the masonries. The findings from the laboratory studies were then validated and evaluated on real historic buildings at real construction sites. Thus, the paper shows a spatially resolved and salt-independent measurement system for determining building moisture.
Lützelberger, Jan; Arneth, Philipp; Franck, Alexander; Drese, Klaus Stefan (2023)
Sensors 23 (13), 5942.
DOI: 10.3390/s23135942
The loosening of an artificial joint is a frequent and critical complication in orthopedics and trauma surgery. Due to a lack of accuracy, conventional diagnostic methods such as projection radiography cannot reliably diagnose loosening in its early stages or detect whether it is associated with the formation of a biofilm at the bone–implant interface. In this work, we present a non-invasive ultrasound-based interferometric measurement procedure for quantifying the thickness of the layer between bone and prosthesis as a correlate to loosening. In principle, it also allows for the material characterization of the interface. A well-known analytical model for the superposition of sound waves reflected in a three-layer system was combined with a new method in data processing to be suitable for medical application at the bone–implant interface. By non-linear fitting of the theoretical prediction of the model to the actual shape of the reflected sound waves in the frequency domain, the thickness of the interlayer can be determined and predictions about its physical properties are possible. With respect to determining the layer’s thickness, the presented approach was successfully applied to idealized test systems and a bone–implant system in the range of approx. 200 µm to 2 mm. After further optimization and adaptation, as well as further experimental tests, the procedure offers great potential to significantly improve the diagnosis of prosthesis loosening at an early stage and may also be applicable to detecting the formation of a biofilm.
Blaschke, Oliver; Brand, Felix; Drese, Klaus Stefan (2023)
Sensors 23 (10), 4616.
DOI: 10.3390/s23104616
For the investigation of moisture and salt content in historic masonry, destructive drilling samples followed by a gravimetric investigation is still the preferred method. In order to prevent the destructive intrusion into the building substance and to enable a large-area measurement, a nondestructive and easy-to-use measuring principle is needed. Previous systems for moisture measurement usually fail due to a strong dependence on contained salts. In this work, a ground penetrating radar (GPR) system was used to determine the frequency-dependent complex permittivity in the range between 1 and 3 GHz on salt-loaded samples of historical building materials. By choosing this frequency range, it was possible to determine the moisture in the samples independently of the salt content. In addition, it was possible to make a quantitative statement about the salt level. The applied method demonstrates that with ground penetrating radar measurements in the frequency range selected here, a salt-independent moisture determination can be carried out.
Backer, Alexander; Fairuschin, Viktor; Drese, Klaus Stefan (2023)
Sensors 23 (9), 4282.
DOI: 10.3390/s23094282
Guided acoustic waves (GAW) have proven to be a useful tool for structural health monitoring (SHM). However, the dispersive nature of commonly used Lamb waves compromises the spatial resolution making it difficult to detect small or weakly reflective defects. Here we demonstrate an approach that can compensate for the dispersive effects, allowing advanced algorithms to be used with significantly higher signal-to-noise ratio and spatial resolution. In this paper, the sign coherence factor (SCF) extension of the total focusing method (TFM) algorithm is used. The effectiveness is examined by numerical simulation and experimentally demonstrated by detecting weakly reflective layers with a highly dispersive A0 mode on an aluminum plate, which are not detectable without compensating for the dispersion effects.
Fort, Ada; Mugnaini, Marco; Panzardi, Enza; Vignoli, Valerio; Dötzer, Florian; Drese, Klaus Stefan (2023)
Fort, Ada; Mugnaini, Marco; Panzardi, Enza; Vignoli, Valerio; Dötzer, Florian...
IEEE Transactions on Instrumentation and Measurement 2023 (72), 1-10.
DOI: 10.1109/TIM.2023.3244222
Landskron, Johannes; Dötzer, Florian; Benkert, Andreas ; Mayl, Michael ; Drese, Klaus Stefan (2022)
Landskron, Johannes; Dötzer, Florian; Benkert, Andreas ; Mayl, Michael ...
Sensors 2022 (2), 6648.
DOI: 10.3390/s22176648
Fakultät Angewandte Naturwissenschaften und Gesundheit (FNG)
Friedrich-Streib-Str. 2
96450 Coburg
T 09561317522 klaus.drese[at]hs-coburg.de
ORCID iD: 0000-0001-8829-1161