Ring, M.; Schlör, D.; Landes, Dieter; Hotho, A. (2019)
Computers & Security 82, S. 156–172.
DOI: 10.1016/j.cose.2018.12.012
Ring, M.; Wunderlich, Sarah; Scheuring, D.; Landes, Dieter; Hotho, A. (2019)
Computers & Security 2019 86, S. 147–167.
DOI: 10.1016/j.cose.2019.06.005
Sedelmaier, Y.; Landes, Dieter (2019)
The Challenges of the Digital Transformation in Education. Advances in Intelligent Systems and Computing 917, S. 64–75.
Sedelmaier, Y.; Landes, Dieter (2019)
11th International Conference on Education and New Learning Technologies (EDULEARN) 2019, S. 8114–8121.
Wunderlich, Sarah; Ring, M.; Landes, Dieter; Hotho, A. (2019)
International Joint Conference: 12th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th International Conference on European Transnational Education (ICEUTE 2019). Advances in Intelligent Systems and Computing 951, S. 14–24.
Engelbrecht, L.; Landes, Dieter; Sedelmaier, Y. (2018)
Proceedings 9th IEEE Global Engineering Education Conference EDUCON 2018, S. 553–560.
DOI: 10.1109/EDUCON.2018.8363278
Hagel, G.; Müller-Amthor, M.; Landes, Dieter; Sedelmaier, Y. (2018)
Proceedings of the 3rd European Conference of Software Engineering Education ECSEE 2018, S. 113–121.
Ring, M.; Landes, Dieter; Hotho, A. (2018)
PLOS ONE 2018 13 (9).
DOI: 10.1371/journal.pone.0204507
Frequently, port scans are early indicators of more serious attacks. Unfortunately, the detection of slow port scans in company networks is challenging due to the massive amount of network data. This paper proposes an innovative approach for preprocessing flow-based data which is specifically tailored to the detection of slow port scans. The preprocessing chain generates new objects based on flow-based data aggregated over time windows while taking domain knowledge as well as additional knowledge about the network structure into account. The computed objects are used as input for the further analysis. Based on these objects, we propose two different approaches for detection of slow port scans. One approach is unsupervised and uses sequential hypothesis testing whereas the other approach is supervised and uses classification algorithms. We compare both approaches with existing port scan detection algorithms on the flow-based CIDDS-001 data set. Experiments indicate that the proposed approaches achieve better detection rates and exhibit less false alarms than similar algorithms.
Sedelmaier, Y.; Landes, Dieter (2018)
Proceedings 9th IEEE Global Engineering Education Conference EDUCON 2018, S. 1077–1085.
Sedelmaier, Y.; Landes, Dieter (2018)
Digitalisierung / Göttingen 2018 (13), S. 145–157.
Sedelmaier, Y.; Landes, Dieter (2018)
Softwaretechnik-Trends 38 (1), S. 35–36.
Sedelmaier, Y.; Landes, Dieter (2018)
Proceedings 9th IEEE Global Engineering Education Conference EDUCON 2018, S. 1068–1076.
DOI: 10.1109/EDUCON.2018.8363348
Sedelmaier, Y.; Landes, Dieter; Kuhn, Maria (2018)
47nd International Conference on Engineering Pedagogy / 21th International Conference on Interactive Collaborative Learning (ICL) 2018, S. 928–939.
Ring, Markus; Wunderlich, Sarah; Grüdl, Dominik; Landes, Dieter; Hotho, A. (2017)
Technical Report.
Ring, M.; Dallmann, A.; Landes, Dieter; Hotho, A. (2017)
17th IEEE International Conference on Data Mining Workshops / Los Alamitos, California 2017, S. 657–666.
DOI: 10.1109/ICDMW.2017.93
Ring, M.; Wunderlich, Sarah; Grüdl, Dominik; Landes, Dieter; Hotho, A. (2017)
Data analytics and decision support for cybersecurity / Cham 2017 3, S. 3–31.
DOI: 10.1007/978-3-319-59439-2_1
Ring, M.; Wunderlich, Sarah; Grüdl, Dominik; Landes, Dieter; Hotho, A. (2017)
Journal of Information Warfare 16 (4), S. 40–53.
Ring, M.; Wunderlich, Sarah; Grüdl, Dominik; Landes, Dieter; Hotho, A. (2017)
Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS) 2017, S. 361–369.
Landes, Dieter; Sedelmaier, Y. (2017)
Proceedings fo the 22nd Conference on Innovation and Technology in Computer Science Education (ITiCSE 2017) 2017, S. 116–121.
Sedelmaier, Y.; Landes, Dieter (2017)
Softwaretechnik-Trends 37 (2), S. 8–9.
Fakultät Elektrotechnik und Informatik (FEI)
Friedrich-Streib-Str. 2
96450 Coburg
T 09561317177 dieter.landes[at]hs-coburg.de
ORCID iD: 0000-0002-0741-3540