Jagirdar, Gayatri; Elsner, Matthias; Scharf, Christian; Simm, Stefan; Borucki, Katrin; Peter, Daniela; Lalk, Michael; Methling, Karen; Linnebacher, Michael; Krohn, Mathias; Wolke, Carmen; Lendeckel, Uwe (2022)
Jagirdar, Gayatri; Elsner, Matthias; Scharf, Christian; Simm, Stefan; Borucki, Katrin...
Frontiers in Genetics 13, 1009773.
DOI: 10.3389/fgene.2022.1009773
[This corrects the article DOI: 10.3389/fgene.2022.931017.].
Jagirdar, Gayatri; Elsner, Matthias; Scharf, Christian; Simm, Stefan; Borucki, Katrin; Peter, Daniela; Lalk, Michael; Methling, Karen; Linnebacher, Michael; Krohn, Mathias; Wolke, Carmen; Lendeckel, Uwe (2022)
Jagirdar, Gayatri; Elsner, Matthias; Scharf, Christian; Simm, Stefan; Borucki, Katrin...
Frontiers in Genetics 13, 931017.
DOI: 10.3389/fgene.2022.931017
Tafazzin-an acyltransferase-is involved in cardiolipin (CL) remodeling. CL is associated with mitochondrial function, structure and more recently with cell proliferation. Various tafazzin isoforms exist in humans. The role of these isoforms in cardiolipin remodeling is unknown. Aim of this study was to investigate if specific isoforms like Δ5 can restore the wild type phenotype with respect to CL composition, cellular proliferation and gene expression profile. In addition, we aimed to determine the molecular mechanism by which tafazzin can modulate gene expression by applying promoter analysis and (Ingenuity Pathway Analyis) IPA to genes regulated by TAZ-deficiency. Expression of Δ5 and rat full length TAZ in C6-TAZ- cells could fully restore CL composition and-as proven for Δ5-this is naturally associated with restoration of mitochondrial respiration. A similar restoration of CL-composition could not be observed after re-expression of an enzymatically dead full-length rat TAZ (H69L; TAZMut). Re-expression of only rat full length TAZ could restore proliferation rate. Surprisingly, the Δ5 variant failed to restore wild-type proliferation. Further, as expected, re-expression of the TAZMut variant completely failed to reverse the gene expression changes, whereas re-expression of the TAZ-FL variant largely did so and the Δ5 variant to somewhat less extent. Very likely TAZ-deficiency provokes substantial long-lasting changes in cellular lipid metabolism which contribute to changes in proliferation and gene expression, and are not or only very slowly reversible.
Rosenkranz, Remus; Ullrich, Sarah; Löchli, Karin; Simm, Stefan; Fragkostefanakis, Sotirios (2022)
Rosenkranz, Remus; Ullrich, Sarah; Löchli, Karin; Simm, Stefan...
Frontiers in Plant Science 13, 911277.
DOI: 10.3389/fpls.2022.911277
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Gross, Lucia; Klinger, Anna; Spies, Nicole; Ernst, Theresa; Flinner, Nadine; Simm, Stefan; Ladig, Roman; Bodensohn, Uwe; Schleiff, Enrico (2021)
Gross, Lucia; Klinger, Anna; Spies, Nicole; Ernst, Theresa; Flinner, Nadine...
The Plant Cell 33 (5), 1657–1681.
DOI: 10.1093/plcell/koab052
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
Sagor, G; Simm, Stefan; Kim, Dong; Niitsu, Masaru; Kusano, Tomonobu; Berberich, Thomas (2021)
Sagor, G; Simm, Stefan; Kim, Dong; Niitsu, Masaru; Kusano, Tomonobu...
Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology 27 (3), 577–586.
DOI: 10.1007/s12298-021-00967-7
Arabidopsis thaliana polyamine oxidase 5 gene (AtPAO5) functions as a thermospermine (T-Spm) oxidase. Aerial growth of its knock-out mutant (Atpao5-2) was significantly repressed by low dose(s) of T-Spm but not by other polyamines. To figure out the underlying mechanism, massive analysis of 3’-cDNA ends was performed. Low dose of T-Spm treatment modulates more than two fold expression 1,398 genes in WT compared to 3186 genes in Atpao5-2. Cell wall, lipid and secondary metabolisms were dramatically affected in low dose T-Spm-treated Atpao5-2, in comparison to other pathways such as TCA cycle-, amino acid- metabolisms and photosynthesis. The cell wall pectin metabolism, cell wall proteins and degradation process were highly modulated. Intriguingly Fe-deficiency responsive genes and drought stress-induced genes were also up-regulated, suggesting the importance of thermospermi’ne flux on regulation of gene network. Histological observation showed that the vascular system of the joint part between stem and leaves was structurally dissociated, indicating its involvement in vascular maintenance. Endogenous increase in T-Spm and reduction in H2O2 contents were found in mutant grown in T-Spm containing media. The results indicate that T-Spm homeostasis by a fine tuned balance of its synthesis and catabolism is important for maintaining gene regulation network and the vascular system in plants.
Artelt, Nadine; Ritter, Alina; Leitermann, Linda; Kliewe, Felix; Schlüter, Rabea; Simm, Stefan; van den Brandt, Jens; Endlich, Karlhans; Endlich, Nicole (2021)
Artelt, Nadine; Ritter, Alina; Leitermann, Linda; Kliewe, Felix; Schlüter, Rabea...
PloS One 16 (12), e0260878.
DOI: 10.1371/journal.pone.0260878
Proper and size selective blood filtration in the kidney depends on an intact morphology of podocyte foot processes. Effacement of interdigitating podocyte foot processes in the glomeruli causes a leaky filtration barrier resulting in proteinuria followed by the development of chronic kidney diseases. Since the function of the filtration barrier is depending on a proper actin cytoskeleton, we studied the role of the important actin-binding protein palladin for podocyte morphology. Podocyte-specific palladin knockout mice on a C57BL/6 genetic background (PodoPalldBL/6-/-) were back crossed to a 129 genetic background (PodoPalld129-/-) which is known to be more sensitive to kidney damage. Then we analyzed the morphological changes of glomeruli and podocytes as well as the expression of the palladin-binding partners Pdlim2, Lasp-1, Amotl1, ezrin and VASP in 6 and 12 months old mice. PodoPalld129-/- mice in 6 and 12 months showed a marked dilatation of the glomerular tuft and a reduced expression of the mesangial marker protein integrin α8 compared to controls of the same age. Furthermore, ultrastructural analysis showed significantly more podocytes with morphological deviations like an enlarged sub-podocyte space and regions with close contact to parietal epithelial cells. Moreover, PodoPalld129-/- of both age showed a severe effacement of podocyte foot processes, a significantly reduced expression of pLasp-1 and Pdlim2, and significantly reduced mRNA expression of Pdlim2 and VASP, three palladin-interacting proteins. Taken together, the results show that palladin is essential for proper podocyte morphology in mice with a 129 background.
Eger, Elias; Heiden, Stefan; Korolew, Katja; Bayingana, Claude; Ndoli, Jules; Sendegeya, Augustin; Gahutu, Jean; Kurz, Mathis; Mockenhaupt, Frank; Müller, Julia; Simm, Stefan; Schaufler, Katharina (2021)
Eger, Elias; Heiden, Stefan; Korolew, Katja; Bayingana, Claude; Ndoli, Jules...
Frontiers in Microbiology 12, 662575.
DOI: 10.3389/fmicb.2021.662575
Multi-drug resistant (MDR), gram-negative Enterobacteriaceae, such as Escherichia coli (E. coli) limit therapeutic options and increase morbidity, mortality, and treatment costs worldwide. They pose a serious burden on healthcare systems, especially in developing countries like Rwanda. Several studies have shown the effects caused by the global spread of extended-spectrum beta-lactamase (ESBL)-producing E. coli. However, limited data is available on transmission dynamics of these pathogens and the mobile elements they carry in the context of clinical and community locations in Sub-Saharan Africa. Here, we examined 120 ESBL-producing E. coli strains from patients hospitalized in the University Teaching Hospital of Butare (Rwanda), their attending caregivers as well as associated community members and livestock. Based on whole-genome analysis, the genetic diversification and phylogenetics were assessed. Moreover, the content of carried plasmids was characterized and investigated for putative transmission among strains, and for their potential role as drivers for the spread of antibiotic resistance. We show that among the 30 different sequence types (ST) detected were the pandemic clonal lineages ST131, ST648 and ST410, which combine high-level antimicrobial resistance with virulence. In addition to the frequently found resistance genes bla CTX-M-15 , tet(34), and aph(6)-Id, we identified csg genes, which are required for curli fiber synthesis and thus biofilm formation. Numerous strains harbored multiple virulence-associated genes (VAGs) including pap (P fimbriae adhesion cluster), fim (type I fimbriae) and chu (Chu heme uptake system). Furthermore, we found phylogenetic relationships among strains from patients and their caregivers or related community members and animals, which indicates transmission of pathogens. Also, we demonstrated the presence and potential transfer of identical/similar ESBL-plasmids in different strains from the Rwandan setting and when compared to an external plasmid. This study highlights the circulation of clinically relevant, pathogenic ESBL-producing E. coli among patients, caregivers and the community in Rwanda. Combining antimicrobial resistance with virulence in addition to the putative exchange of mobile genetic elements among bacterial pathogens poses a significant risk around the world.
Rosenkranz, Remus; Bachiri, Samia; Vraggalas, Stavros; Keller, Mario; Simm, Stefan; Schleiff, Enrico; Fragkostefanakis, Sotirios (2021)
Rosenkranz, Remus; Bachiri, Samia; Vraggalas, Stavros; Keller, Mario; Simm, Stefan...
Frontiers in Plant Science 12, 645689.
DOI: 10.3389/fpls.2021.645689
Alternative splicing is an important mechanism for the regulation of gene expression in eukaryotes during development, cell differentiation or stress response. Alterations in the splicing profiles of genes under high temperatures that cause heat stress (HS) can impact the maintenance of cellular homeostasis and thermotolerance. Consequently, information on factors involved in HS-sensitive alternative splicing is required to formulate the principles of HS response. Serine/arginine-rich (SR) proteins have a central role in alternative splicing. We aimed for the identification and characterization of SR-coding genes in tomato (Solanum lycopersicum), a plant extensively used in HS studies. We identified 17 canonical SR and two SR-like genes. Several SR-coding genes show differential expression and altered splicing profiles in different organs as well as in response to HS. The transcriptional induction of five SR and one SR-like genes is partially dependent on the master regulator of HS response, HS transcription factor HsfA1a. Cis-elements in the promoters of these SR genes were predicted, which can be putatively recognized by HS-induced transcription factors. Further, transiently expressed SRs show reduced or steady-state protein levels in response to HS. Thus, the levels of SRs under HS are regulated by changes in transcription, alternative splicing and protein stability. We propose that the accumulation or reduction of SRs under HS can impact temperature-sensitive alternative splicing.
Streit, Deniz; Shanmugam, Thiruvenkadam; Garbelyanski, Asen; Simm, Stefan; Schleiff, Enrico (2020)
Streit, Deniz; Shanmugam, Thiruvenkadam; Garbelyanski, Asen; Simm, Stefan...
Plants (Basel, Switzerland) 9 (8), 1016.
DOI: 10.3390/plants9081016
Ribosome biogenesis is one cell function-defining process. It depends on efficient transcription of rDNAs in the nucleolus as well as on the cytosolic synthesis of ribosomal proteins. For newly transcribed rRNA modification and ribosomal protein assembly, so-called small nucleolar RNAs (snoRNAs) and ribosome biogenesis factors (RBFs) are required. For both, an inventory was established for model systems like yeast and humans. For plants, many assignments are based on predictions. Here, RNA deep sequencing after nuclei enrichment was combined with single molecule species detection by northern blot and in vivo fluorescence in situ hybridization (FISH)-based localization studies. In addition, the occurrence and abundance of selected snoRNAs in different tissues were determined. These approaches confirm the presence of most of the database-deposited snoRNAs in cell cultures, but some of them are localized in the cytosol rather than in the nucleus. Further, for the explored snoRNA examples, differences in their abundance in different tissues were observed, suggesting a tissue-specific function of some snoRNAs. Thus, based on prediction and experimental confirmation, many plant snoRNAs can be proposed, while it cannot be excluded that some of the proposed snoRNAs perform alternative functions than are involved in rRNA modification.
Keller, Mario; Schleiff, Enrico; Simm, Stefan (2020)
Scientific Reports 10 (1), 10694.
DOI: 10.1038/s41598-020-67833-6
Cellular transitions during development and stress response depend on coordinated transcriptomic and proteomic alterations. Pollen is particular because its development is a complex process that includes meiotic and mitotic divisions which causes a high heat sensitivity of these cells. Development and stress response are accompanied by a reprogramming of the transcriptome, e.g. by post-transcriptional regulation via miRNAs. We identified known and potentially novel miRNAs in the transcriptome of developing and heat-stressed pollen of Solanum lycopersicum (tomato). The prediction of target mRNAs yielded an equal number of predicted target-sites in CDS and 3’UTR regions of target mRNAs. The result enabled the postulation of a possible link between miRNAs and a fine-tuning of transcription factor abundance during pollen development. miRNAs seem to play a role in the pollen heat stress response as well. We identified several heat stress transcription factors and heat shock proteins as putative targets of miRNAs in response to heat stress, thereby placing these miRNAs as important elements of thermotolerance. Moreover, for members of the AP2, SBP and ARF family members we could predict a miRNA-mediated regulation during development via the miR172, mir156 and mir160-family strengthening the current concept of a cross-connection between development and stress response in plants.
Hu, Yangjie; Fragkostefanakis, Sotirios; Schleiff, Enrico; Simm, Stefan (2020)
Genes 11 (6), 655.
DOI: 10.3390/genes11060655
Transcriptional reprograming after the exposure of plants to elevated temperatures is a hallmark of stress response which is required for the manifestation of thermotolerance. Central transcription factors regulate the stress survival and recovery mechanisms and many of the core responses controlled by these factors are well described. In turn, pathways and specific genes contributing to variations in the thermotolerance capacity even among closely related plant genotypes are not well defined. A seedling-based assay was developed to directly compare the growth and transcriptome response to heat stress in four tomato genotypes with contrasting thermotolerance. The conserved and the genotype-specific alterations of mRNA abundance in response to heat stress were monitored after exposure to three different temperatures. The transcripts of the majority of genes behave similarly in all genotypes, including the majority of heat stress transcription factors and heat shock proteins, but also genes involved in photosynthesis and mitochondrial ATP production. In turn, genes involved in hormone and RNA-based regulation, such as auxin- and ethylene-related genes, or transcription factors like HsfA6b, show a differential regulation that associates with the thermotolerance pattern. Our results provide an inventory of genes likely involved in core and genotype-dependent heat stress response mechanisms with putative role in thermotolerance in tomato seedlings.
Gross, Lucia; Spies, Nicole; Simm, Stefan; Schleiff, Enrico (2020)
FEBS open bio 10 (3), 444–454.
DOI: 10.1002/2211-5463.12791
The insertion of membrane proteins requires proteinaceous complexes in the cytoplasm, the membrane, and the lumen of organelles. Most of the required complexes have been described, while the components for insertion of β-barrel-type proteins into the outer membrane of chloroplasts remain unknown. The same holds true for the signals required for the insertion of β-barrel-type proteins. At present, only the processing of Toc75-III, the β-barrel-type protein of the central chloroplast translocon with an atypical signal, has been explored in detail. However, it has been debated whether Toc75-V/ outer envelope protein 80 (OEP80), a second protein of the same family, contains a signal and undergoes processing. To substantiate the hypothesis that Toc75-V/OEP80 is processed as well, we reinvestigated the processing in a protoplast-based assay as well as in native membranes. Our results confirm the existence of a cleavable segment. By protease protection and pegylation, we observed intermembrane space localization of the soluble N-terminal domain. Thus, Toc75-V contains a cleavable N-terminal signal and exposes its polypeptide transport-associated domains to the intermembrane space of plastids, where it likely interacts with its substrates.
Bodensohn, Uwe; Simm, Stefan; Fischer, Ken; Jäschke, Michelle; Groß, Lucia; Kramer, Katharina; Ehmann, Christian; Rensing, Stefan; Ladig, Roman; Schleiff, Enrico (2019)
Bodensohn, Uwe; Simm, Stefan; Fischer, Ken; Jäschke, Michelle; Groß, Lucia...
Biochimica Et Biophysica Acta. Molecular Cell Research 1866 (10), 1650–1662.
DOI: 10.1016/j.bbamcr.2019.06.012
The guided entry of tail-anchored proteins (GET) pathway facilitates targeting and insertion of tail-anchored proteins into membranes. In plants, such a protein insertion machinery for the endoplasmic reticulum as well as constituents within mitochondrial and chloroplasts were discovered. Previous phylogenetic analysis revealed that Get3 sequences of Embryophyta form two clades representing cytosolic ("a") and organellar ("bc") GET3 homologs, respectively. Cellular fractionation of Arabidopsis thaliana seedlings and usage of the self-assembly GFP system in protoplasts verified the cytosolic (ATGet3a), plastidic (ATGet3b) and mitochondrial (ATGet3c) localization of the different homologs. The identified plant homologs of Get1 and Get4 in A. thaliana are localized in ER and cytosol, respectively, implicating a degree of conservation of the GET pathway in A. thaliana. Transient expression of Get3 homologs of Solanum lycopersicum, Medicago × varia or Physcomitrella patens with the self-assembly GFP technique in homologous and heterologous systems verified that multiple Get3 homologs with differing subcellular localizations are common in plants. Chloroplast localized Get3 homologs were detected in all tested plant systems. In contrast, mitochondrial localized Get3 homologs were not identified in S. lycopersicum, or P. patens, while we confirmed on the example of A. thaliana proteins that mitochondrial localized Get3 proteins are properly targeted in S. lycopersicum as well.
El-Shershaby, Asmaa; Ullrich, Sarah; Simm, Stefan; Scharf, Klaus-Dieter; Schleiff, Enrico; Fragkostefanakis, Sotirios (2019)
El-Shershaby, Asmaa; Ullrich, Sarah; Simm, Stefan; Scharf, Klaus-Dieter...
Gene 714, 143985.
DOI: 10.1016/j.gene.2019.143985
In all eukaryotes, the response to heat stress (HS) is dependent on the activity of HS transcription factors (Hsfs). Plants contain a large number of Hsfs, however, only members of the HsfA1 subfamily are considered as master regulators of stress response and thermotolerance. In Solanum lycopersicum, among the four HsfA1 members, only HsfA1a has been proposed to possess a master regulator function. We performed a comparative analysis of HsfA1a, HsfA1b, HsfA1c and HsfA1e at different levels of regulation and function. HsfA1a is constitutively expressed under control and stress conditions, while the other members are induced in specific tissues and stages of HS response. Despite that all members are localized in the nucleus when expressed in protoplasts, only HsfA1a shows a wide range of basal activity on several HS-induced genes. In contrast, HsfA1b, HsfA1c, and HsfA1e show only high activity for specific subsets of genes. Domain swapping mutants between HsfA1a and HsfA1c revealed that the variation in that transcriptional transactivation activity is due to differences in the DNA binding domain (DBD). Specifically, we identified a conserved arginine (R107) residue in the turn of β3 and β4 sheet in the C-terminus of the DBD of HsfA1a that is highly conserved in plant HsfA1 proteins, but is replaced by leucine and cysteine in tomato HsfA1c and HsfA1e, respectively. Although not directly involved in DNA interaction, R107 contributes to DNA binding and consequently the activity of HsfA1a. Thus, we demonstrate that this variation in DBD in part explains the functional diversification of tomato HsfA1 members.
Kovacevic, Jelena; Palm, Denise; Jooss, Domink; Bublak, Daniela; Simm, Stefan; Schleiff, Enrico (2019)
Kovacevic, Jelena; Palm, Denise; Jooss, Domink; Bublak, Daniela; Simm, Stefan...
Plant Cell Reports 38 (8), 937–949.
DOI: 10.1007/s00299-019-02416-y
Different genes coding for one ribosome biogenesis factor are differentially expressed and are likely under the control of distinct transcription factors, which contributes to the regulatory space for ribosome maturation. Maturation of ribosomes including rRNA processing and modification, rRNA folding and ribosome protein association requires the function of many ribosome biogenesis factors (RBFs). Recent studies document plant-specific variations of the generally conserved process of ribosome biogenesis. For instance, distinct rRNA maturation pathways and intermediates have been identified, the existence of plant specific RBFs has been proposed and several RBFs are encoded by multiple genes. The latter in combination with the discussed ribosome heterogeneity points to a possible function of the different proteins representing one RBF in diversification of ribosomal compositions. Such factor-based regulation would require a differential regulation of their expression, may be even controlled by different transcription factors. We analyzed the expression profiles of genes coding for putative RBFs and transcription factors. Most of the genes coding for RBFs are expressed in a comparable manner, while different genes coding for a single RBF are often differentially expressed. Based on a selected set of genes we document a function of the transcription factors AtMYC1, AtMYC2, AtbHLH105 and AtMYB26 on the regulation of different RBFs. Moreover, on the example of the RBFs LSG1 and BRX1, both encoded by two genes, we give a first hint on a differential transcription factor dependence of expression. Consistent with this observation, the phenotypic analysis of RBF mutants suggests a relation between LSG1-1 and BRX1-1 expression and the transcription factor MYC1. In summary, we propose that the multiple genes coding for one RBF are required to enlarge the regulatory space for ribosome biogenesis.
Wiesemann, Katharina; Simm, Stefan; Mirus, Oliver; Ladig, Roman; Schleiff, Enrico (2019)
Biochimica Et Biophysica Acta. Proteins and Proteomics 1867 (6), 627–636.
DOI: 10.1016/j.bbapap.2019.01.002
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins. This substrate recognition is part of the regulation of the GTPase cycle of Toc34. The Toc159 monomer and the Toc34 homodimer recognize the transit peptide of the small subunit of Rubisco at the N- and at the C-terminal region, respectively. Analysis of the transit peptide interaction by crosslinking shows that the heterodimer between both G-domains binds pSSU most efficiently. While substrate recognition by Toc34 homodimer was shown to regulate nucleotide exchange, we provide evidence that the high activation energy of the GTPase Toc159 is lowered by substrate recognition. The nucleotide affinity of Toc34G homodimer and Toc159G monomer are distinct, Toc34G homodimer recognizes GDP and Toc159G GTP with highest affinity. Moreover, the analysis of the nucleotide association rates of the monomeric and dimeric receptor units suggests that the heterodimer has an arrangement distinct from the homodimer of Toc34. Based on the biochemical parameters determined we propose a model for the order of events at the cytosolic side of TOC. The molecular processes described by this hypothesis range from transit peptide recognition to perception of the substrate by the translocation channel.
Fragkostefanakis, Sotirios; Simm, Stefan; El-Shershaby, Asmaa; Hu, Yangjie; Bublak, Daniela; Mesihovic, Anida; Darm, Katrin; Mishra, Shravan; Tschiersch, Bettina; Theres, Klaus; Scharf, Christian; Schleiff, Enrico; Scharf, Klaus-Dieter (2019)
Fragkostefanakis, Sotirios; Simm, Stefan; El-Shershaby, Asmaa; Hu, Yangjie...
Plant, Cell & Environment 42 (3), 874–890.
DOI: 10.1111/pce.13434
Plants code for a multitude of heat stress transcription factors (Hsfs). Three of them act as central regulators of heat stress (HS) response in tomato (Solanum lycopersicum). HsfA1a regulates the initial response, and HsfA2 controls acquired thermotolerance. HsfB1 is a transcriptional repressor but can also act as co-activator of HsfA1a. Currently, the mode of action and the relevance of the dual function of HsfB1 remain elusive. We examined this in HsfB1 overexpression or suppression transgenic tomato lines. Proteome analysis revealed that HsfB1 overexpression stimulates the co-activator function of HsfB1 and consequently the accumulation of HS-related proteins under non-stress conditions. Plants with enhanced levels of HsfB1 show aberrant growth and development but enhanced thermotolerance. HsfB1 suppression has no significant effect prior to stress. Upon HS, HsfB1 suppression strongly enhances the induction of heat shock proteins due to the higher activity of other HS-induced Hsfs, resulting in increased thermotolerance compared with wild-type. Thereby, HsfB1 acts as co-activator of HsfA1a for several Hsps, but as a transcriptional repressor on other Hsfs, including HsfA1b and HsfA2. The dual function explains the activation of chaperones to enhance protection and regulate the balance between growth and stress response upon deviations from the homeostatic levels of HsfB1.
Palm, Denise; Streit, Deniz; Shanmugam, Thiruvenkadam; Weis, Benjamin; Ruprecht, Maike; Simm, Stefan; Schleiff, Enrico (2019)
Palm, Denise; Streit, Deniz; Shanmugam, Thiruvenkadam; Weis, Benjamin; Ruprecht, Maike...
Nucleic Acids Research 47 (4), 1880–1895.
DOI: 10.1093/nar/gky1261
rRNA processing and assembly of ribosomal proteins during maturation of ribosomes involve many ribosome biogenesis factors (RBFs). Recent studies identified differences in the set of RBFs in humans and yeast, and the existence of plant-specific RBFs has been proposed as well. To identify such plant-specific RBFs, we characterized T-DNA insertion mutants of 15 Arabidopsis thaliana genes encoding nuclear proteins with nucleotide binding properties that are not orthologues to yeast or human RBFs. Mutants of nine genes show an altered rRNA processing ranging from inhibition of initial 35S pre-rRNA cleavage to final maturation events like the 6S pre-rRNA processing. These phenotypes led to their annotation as ’involved in rRNA processing’ - IRP. The irp mutants are either lethal or show developmental and stress related phenotypes. We identified IRPs for maturation of the plant-specific precursor 5’-5.8S and one affecting the pathway with ITS2 first cleavage of the 35S pre-rRNA transcript. Moreover, we realized that 5’-5.8S processing is essential, while a mutant causing 6S accumulation shows only a weak phenotype. Thus, we demonstrate the importance of the maturation of the plant-specific precursor 5’-5.8S for plant development as well as the occurrence of an ITS2 first cleavage pathway in fast dividing tissues.
Berz, Jannik; Simm, Stefan; Schuster, Sebastian; Scharf, Klaus-Dieter; Schleiff, Enrico; Ebersberger, Ingo (2019)
Berz, Jannik; Simm, Stefan; Schuster, Sebastian; Scharf, Klaus-Dieter; Schleiff, Enrico...
Bioinformatics and Biology Insights 13, 1177932218821365.
DOI: 10.1177/1177932218821365
Heat stress transcription factors (HSFs) regulate transcriptional response to a large number of environmental influences, such as temperature fluctuations and chemical compound applications. Plant HSFs represent a large and diverse gene family. The HSF members vary substantially both in gene expression patterns and molecular functions. HEATSTER is a web resource for mining, annotating, and analyzing members of the different classes of HSFs in plants. A web-interface allows the identification and class assignment of HSFs, intuitive searches in the database and visualization of conserved motifs, and domains to classify novel HSFs.
Palm, Denise; Streit, Deniz; Ruprecht, Maike; Simm, Stefan; Scharf, Christian; Schleiff, Enrico (2018)
Palm, Denise; Streit, Deniz; Ruprecht, Maike; Simm, Stefan; Scharf, Christian...
FEBS open bio 8 (9), 1437–1444.
DOI: 10.1002/2211-5463.12487
Ribosome biogenesis is essential for cellular function and involves rRNA synthesis, rRNA processing and modification, and ribosomal protein assembly. Ribosome biogenesis factors and small nucleolar RNA assist these events. Ribosomal maturation takes place in the nucleolus, the nucleoplasm, and the cytosol in a coordinated and controlled manner. For example, some ribosomal proteins are thought to be assembled in the cytoplasm based on the observations in Saccharomyces cerevisiae. Here, we used cellular fractionation to demonstrate that cleavage of the 20S intermediate, the precursor to mature 18S rRNA, does not occur in the nucleoplasm of Arabidopsis thaliana. It most likely occurs in the cytoplasm. Further, we verified the proposed localization of RPS10e, RPS26e, and RPL24a/b in the nucleus and RPP1 in the nucleolus of A. thaliana by ribosome profiling, immunofluorescence, and analysis of the localization of GFP fusion proteins. Our results suggest that the order of events during ribosomal protein assembly in the ribosome biogenesis pathway differs between plants and yeast.
Fakultät Angewandte Naturwissenschaften und Gesundheit (FNG)
Friedrich-Streib-Str. 2
96450 Coburg
T +49 9561 317 349 Stefan.Simm[at]hs-coburg.de
ORCID iD: 0000-0001-9371-2709